Polyclonal Anti-Terminal Deoxynucleotidyl Transferase, *TDT*

Catalogue No. PA1227

Lot No. 09C01

Ig type rabbit IgG

Size 100µg/vial

Specificity
Human.
No cross reactivity with other proteins.

Recommended application
Western blot

Immunogen
A synthetic peptide corresponding to a sequence at the C-terminal of human TDT, identical to the related rat and mouse sequence.

Purity
Immunogen affinity purified.

Application

<table>
<thead>
<tr>
<th>Concentration</th>
<th>Tested Species</th>
<th>Concluded Species</th>
<th>Antigen Retrieval</th>
</tr>
</thead>
<tbody>
<tr>
<td>WB</td>
<td>1µg/ml</td>
<td>Hu</td>
<td>-</td>
</tr>
<tr>
<td>IHC-P</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>IHC-F</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>ICC</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Other applications have not been tested.

Optimal dilutions should be determined by end user.

Contents
Each vial contains 5mg BSA, 0.9mg NaCl, 0.2mg Na₂HPO₄, 0.05mg Thimerosal, 0.05mg NaN₃.

Reconstitution
0.2ml of distilled water will yield a concentration of 500µg/ml.

Storage
At -20°C for one year. After reconstitution, at 4°C for one month. It can also be aliquotted and stored frozen at -20°C for longer time.

To reorder contact us at:
Antagene, Inc.
Toll Free: 1(866)964-2589
email: Info@antageneinc.com

FOR RESEARCH USE ONLY. NOT FOR DIAGNOSTIC AND CLINICAL USE.
BACKGROUND

Terminal Deoxynucleotidyl Transferase, also known as TdT and terminal transferase, is a unique DNA polymerase without template direction catalyzes the addition of deoxyribonucleotides onto the 3-prime-hydroxyl end of DNA primers.\(^1\) Its gene is mapped to the region 10q23-q24.\(^2\) And TDT cDNA contains an open reading frame of 1,530 basepairs corresponding to a protein containing 510 amino acids.\(^3\) TDT may be responsible for inserting nucleotides (N regions) at the V(H)-D and D-J(H) junctions of immunoglobulin genes. The enzyme is present in immature thymocytes, some bone marrow cells, transformed pre-B and pre-T cell lines, and leukemia cells. Additionally, TdT catalyses the addition of nucleotides to the 3' terminus of a DNA molecule. Unlike most DNA polymerases it does not require a template. The preferred substrate of this enzyme is a 3'-overhang, but it can also add nucleotides to blunt or recessed 3' ends. Cobalt is a necessary cofactor.

REFERENCE